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Abstract— Timed Failure Propagation Graphs (TFPGs) have
been widely used for the failure modeling and diagnosis
of safety-critical systems. Currently most TFPGs are man-
ually constructed by system experts, a process that can be
time-consuming, error-prone, and even impossible for systems
with highly nonlinear and machine-learning-based components.
Moreover, the current formalism of TFPGs can only deal with
discrete-state systems, a feature greatly restricts its adoption in
the diagnosis of continuous-state systems. This paper proposes
a new type of TFPGs, called Real Timed Failure Propaga-
tion Graphs (rTFPGs), designed for continuous-state systems.
More importantly, it presents a systematic way of constructing
rTFPGs by combining the powers of human experts and data-
driven methods: first, an expert constructs a partial rTFPG
base his/her expertise; then a data-driven algorithm refines the
rTFPG by adding nodes and edges based on a given set of
labeled signals. The proposed approach has been successfully
implemented and evaluated on a testbed emulating a spacecraft
power storage and distribution system.

Index Terms— Failure diagnosis, signal temporal logic, space-
craft power system, timed failure propagation graphs.

I. INTRODUCTION

Timely and correct diagnosis of faults are essential for the
operation of safety-critical systems. Since early 1990s, Timed
Failure Propagation Graphs (TFPGs) have been widely used
for fault diagnosis in practice, e.g., by NASA [1] and
Boeing [2]. TFPGs’ popularity is partly due to their elegant
formalism, i.e., directed graphs, and their ability to describe
the occurrence of failures, their direct and indirect effects,
and the corresponding consequences over time [3].

a) Related Work: TFPGs are primarily constructed
manually by system experts. The construction process can
be time-consuming, error-prone, and even impossible for
systems with highly nonlinear and machine-learning-based
components. Therefore, in recent years, the automatic syn-
thesis of TFPGs has become an increasingly active research
area [4], [5], [6]. These existing methods convert the TFPG
synthesis problem into either i) a timed automaton learning
problem and then rely on state-of-the-art automata learning
algorithms to construct the TFPG [4], or ii) a set of proof
obligations and then use state-of-the-art model checkers to
verify (refine if necessary) the TFPG [5], [6]. There are two
main issues with existing approaches. First, they all assume
that all the nodes of the to-be-synthesized TFPG are given,
which is a strong assumption for many complex systems,

All authors are with the Department of Mechanical and Aerospace
Engineering, University of California, Davis (email: zdkong@ucdavis.edu).
This work was supported by a Space Technology Research Institutes
grant (grant number: 80NSSC19K1052) from NASA’s Space Technology
Research Grants Program.

since experts may not be able to delineate all system failures
and discrepancies. Second, they can only deal with discrete-
state systems, while many, if not most, realistic systems are
of continuous states.

b) Contributions: This paper makes two main contri-
butions. First, it proposes a new formalism of TFPGs, called
Real Timed Failure Propagation Graphs (rTFPGs), that are
capable of abstracting and diagnosing faults of continuous-
state systems. Second, it proposes a data-driven method that
can construct an rTFPG based on a set of signals labeled
by their failure modes. The proposed method starts from a
partial rTFPG provided by an expert, who is assumed to
know some but not all the discrepancies, and then add new
nodes and edges to refine the rTFPG based on the signals.

II. REAL TIMED FAILURE PROPAGATION GRAPHS

In this section, we will first introduce Real Timed Failure
Propagation Graphs (rTFPGs), based on the existing defini-
tion of TFPGs [3], [1], [2]. We will then define the semantics
of rTFPGs, i.e., whether a signal satisfies a given rTFPG.

A. Definitions of Signals and rTFPGs

Definition 1. (Signal). Given a discrete time domain N, a
continuous-state signal is a mapping x : N → Rn. We use
x[t] to denote the value of signal x at time t and xi, i =
1, · · · , n to denote the i-th dimension of signal x.
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Fig. 1: An example signal x.

Definition 2. (rTFPG). An rTFPG is a tuple G =
〈F,D,E,ET,DC,DP 〉, where (i) F is a set of failure
mode nodes; (ii) D is a set of discrepancy nodes; (iii)
E ⊆ V × V is a set of edges with V = F ∪ D; (iv)
ET : E → I maps an edge e ∈ E to a time interval
[tmin(e), tmax(e)] ∈ I with tmin(e) and tmax(e) being the
minimum and maximum propagation times on the edge e; (v)
DC : D → {AND,OR} maps a discrepancy node d ∈ D
to its discrepancy type; and (vi) DP maps a discrepancy
node d ∈ D to a predicate µ := f(x) ∼ c ∈ Φ over a signal



x, where f : Rn → R is a function, ∼∈ {<,≥}, and c ∈ R
a constant. We use OR(G), AND(G), D(G), and F (G)
to denote the sets of OR nodes, AND nodes, discrepancy
nodes, and failure mode nodes of an rTFPG G, respectively.
One important feature of an rTFPG is that it always from a
(or a set of) failure mode node(s) p ∈ F (G).
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Fig. 2: An example rTFPG G. Dotted and solid boxes are
failure mode and AND nodes, respectively. Circles are OR
nodes. F (G) = {FM1}, D(G) = {D1, D2, D3, D4},
AND(G) = {D3}, and OR(G) = {D1, D2, D4}.

Example 1. Fig. 2 shows one such rTFPG. The main
difference between an rTFPG and a typical TFPG is that the
discrepancy nodes of an rTFPG are defined by predicates.
E.g., the predicate x1 ≥ 2 attached to the node D2 means
that D2 can be activated only if x1 ≥ 2.

B. Semantics (Satisfaction) of rTFPG

Definition 3. (Mapping4G). Given a signal x and an rTFPG
G, a mapping 4G can be introduced to map the signal x to
a discrete-state trace π by mapping x[t] to π[t] as follows:

π[t] := 4G(x[t]) = (u1, · · · , u|F (G)|, v1, · · · , v|D(G)|, t)
T

where ui is 1 if the ith failure mode node in F (G) is active
and 0 otherwise, vi is 1 if the ith discrepancy node in D(G)
is active and 0 otherwise. We call trace π an rTFPG trace,
which represents failure propagation as a timed sequence of
failure mode and discrepancy occurrences.
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Fig. 3: The rTFPG trace π corresponding to the signal shown
in Fig. 1 and the rTFPG shown in Fig. 2. The grey nodes
are the ones that are active and assigned to Boolean value 1.

Example 1. (Continued.) Fig. 3 illustrates the rTFPG trace
π := π[0], · · · , π[8] corresponding to the signal x shown in
Fig. 1 and the rTFPG G shown in Fig. 2. The initial state, a
default 0 vector, is reset at time 0 to π[0] = (1, 1, 0, 0, 0, 0)T

with the first 1 indicating the only fault mode node FM1

being active, the second 1 indicating the discrepancy node
D1 being active (i.e., its predicate x1 < 2 being satisfied),
the next three zeros indicating the other three discrepancy
nodes being inactive (i.e., their predicates being violated),
and the last 0 being the time. The next two state π[1] and
π[2] share the same first five elements with π[0] but with
different time t. At t = 3, a number of events happen: (i)
D1’s predicate x1 < 2 is not satisfied anymore, making D1
inactive; (ii) the predicates corresponding to D2 and D3 are
now satisfied, making D2 and D3 active; therefore we have
π[3] = (1, 0, 1, 1, 0, 3)T . The remaining portion of π can be
obtained similarly and easily.

With Def. 3, given an rTFPG G, we are able to map a
continuous-state signal x to a discrete-state rTFPG trace π.
It is important to point out that the discrete state nature of
such traces allows us to use existing work on TFPGs [5] to
define the satisfactory of a signal x with respect to an rTFPG
G. In the following, let π be the corresponding rTFPG trace
of the signal x after applying the map 4G to x; moreover,
we say x[t] |= d ∈ D(G) if π[t] |= d, which is well defined
[5], since π is a discrete-state trace and d is a node of an
rTFPG, a special case of TFPG.

Definition 4. (AND-node Satisfaction). A signal x satisfies
the constraints of an AND node d ∈ D(G) of an rTFPG G at
time t, denoted as x[t] |= d, iff the following conditions hold:
(i) ∃j ≤ t, x[j] |= d, and ∀e = (v, d) ∈ E, ∃i ≤ j, j − i ≥
tmin(e) and ∀l, i ≤ l ≤ j, x[l] |= v; (ii) ∃e = (v, d) ∈ E,
such that ¬∃i ≤ t, t− i > tmax(e) and ∀l, i ≤ l ≤ t, x[l] |=
(v ∧ ¬d).

Condition (i) states that if a discrepancy node d is active
at time t, it must have been activated at an earlier time j,
when every edge e leading to d has been active for at least
tmin(e). Condition (ii) states that the fault propagation must
respect tmax(e) along at least one edge e.

Definition 5. (OR-node Satisfaction). A signal x satisfies the
constraints of an OR node d ∈ D(G) of an rTFPG G at time
t, denoted as x[t] |= d, iff the following conditions hold: (i)
∃j ≤ t, x[j] |= d, and ∃e = (v, d) ∈ E, ∃i ≤ j, j − i ≥
tmin(e) and ∀l, i ≤ l ≤ j, x[l] |= v; (ii) ∀e = (v, d) ∈ E,
such that ¬∃i ≤ t, t− i > tmax(e) and ∀l, i ≤ l ≤ t, x[l] |=
(v ∧ ¬d).

Condition (i) states that if a discrepancy node d is active
at time t, it must have been activated at an earlier time j
when at least one edge e leading to d has been active for at
least tmin(e). Condition (ii) states that the fault propagation
cannot be delayed for more than tmax(e) along any edge e.

Definition 6. (rTFPG Satisfaction). Given an rTFPG G and
a set of signals S, G is satisfiable with respect to S if for
each node d of G, there exists a signal x ∈ S, such that
∃j ∈ N, x[j] |= d.

Example 1. (Continued.) D1 is activated at t = 0 sec. The
satisfaction conditions for D2 require D1 keeps being active
for at least 2 secs and then D2 is activated within 3 secs



(= 5 − 2 = tmax(e) − tmin(e) with e = (D1, D2)). The
signal x in Fig. 1 satisfies that D1 is active for the first 3 secs
and then D2 is activated (its predicate x1 ≥ 2 holds) at t = 3
sec. Therefore, D2 is satisfied. D4 is satisfied similarly. The
satisfaction conditions for D3 require that D2 and D4 keep
being active for at least 3 secs and then D3 is activated within
either 2 (= 5− 3 for e = (D2, D3)) or 5 (= 8− 3 for e =
(D4, D3)) secs. The signal x satisfies that D3 is activated
at t = 7 sec. Therefore, D3 is satisfied and subsequently the
rTFPG in Fig. 2 is satisfiable by the signal x.

In principle then, with the help of 4G, we are able to
check the satisfaction of a continuous-state signal x with
respect to an rTFPG G using existing verification tools suit-
able for TFPGs, e.g., Satisfiability Modulo Theories (SMT)
solvers. However, most of these tools are computationally
expensive and, in our problem (to be introduced), we will
need to check the satisfaction of x against G repeatedly.
Therefore, a computationally efficient tool is needed. In this
paper, we will take advantage of a formalism called Signal
Temporal Logic (STL), particularly its quantitative semantics,
which is easy to compute and can be adopted to quantify the
satisfaction of a signal x with respect to an rTFPG G.

Definition 7. (STL). STL is a predicate logic defined over
signals with its syntax defined as [7]:

ϕ := µ|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1U[a,b]ϕ2,

where (i) a, b ∈ R; (ii) µ ∈ Φ is a predicate defined the
same as in Def. 2; (iii) Boolean operators ¬, ∧, and ∨
are negation (“not”), conjunction (“and”), and dis-junction
(“or”), respectively; and (iv) temporal operators U stands for
“until”. The STL is equipped with a quantitative semantics
called robustness degree ρ, which maps an STL formula ϕ
and a signal x to a real value ρ(ϕ, x) [7]. ρ(ϕ, x) ≥ 0 if x
satisfies ϕ and ρ(ϕ, x) < 0 if x violates ϕ.

Definition 8. (Activation Graph (AG)). Given a signal x and
an rTFPG G, the AG σ of x is the subgraph of G that has
been activated by the signal x. In this paper, we assume that
a signal x corresponds to only one failure mode p. We call
p the label of the signal x.

Lemma 1. Any node d ∈ D(G) of an AG σ can be mapped
to an STL formula ϕd, such that if a signal x activates the
node d, we have x |= ϕd.

Proof. Let µd be the predicate associated with the node d.
Assume d has nd direct predecessors. The STL formula
ϕd can be constructed recursively as follows: if d is an
AND node, according to Def. 4, ϕd can be written as
∧nd
i=1(ϕiU[tmin(i),tmax(i)]µd); if d is an OR node, according

to Def. 5, ϕd can be written as ∨nd
i=1(ϕiU[tmin(i),tmax(i)]µd);

in both cases, ϕi is the STL formula of the ith predecessor,
[tmin(i), tmax(i)] is the temporal interval of the edge di-
rected from the ith predecessor to d; ϕi can be constructed
similarly as ϕd. The construction process will terminate until
we have reached a fault mode node, after which we have
derived a nested STL formula ϕd.

Example 1. (Continued.) The AG σ of the signal x shown in
Fig. 1 is the entire rTFPG G shown in Fig. 2. The node D3
can be mapped to an STL formula ϕD3 := (ϕ1U[3,5](x2 <
2)) ∧ (ϕ2U[3,8](x2 < 2)), where ϕ1 = (x1 < 2)U[2,5](x1 >
2) and ϕ2 = (x1 < 2))U[3,6](x3 < 2). Any signal x
activating the node D3 must satisfy ϕD3.

III. PROBLEM FORMULATION

Definition 9. (rTFPG Diagnosability). Given an rTFPG G
and a set of labeled signals S (with each signal x labeled by
its failure mode px ∈ F (G)), we say that G is diagnosable
with respect to S if the following two conditions hold:
• (i) for any two signals x′, x′′ ∈ S that have different

labels (i.e., px′ 6= px′′ ), ∃d ∈ σx′ such that x′ |= ϕd

and x′′ |= ¬ϕd, where σx′ is the AG of the signal x′,
• (ii) for any two signals x′, x′′ ∈ S that have the same

label (i.e., px′ = px′′ ), ∃d ∈ σx′ such that x′ |= ϕd and
x′′ |= ϕd, where σx′ is the AG of the signal x′.

The problem we are solving in this paper can be informally
stated as finding an rTFPG G that captures the failure prop-
agation demonstrated by a set of continuous-state signals
S. Based on the definition of rTFPG diagnosability, such a
problem can be formally defined as follows:

Problem 1. (rTFPG Refinement). Given an initially satis-
fiable rTFPG G and a set of labeled signals S (with each
signal x labeled by its failure mode px ∈ F (G)), find another
satisfiable rTFPG G′ satisfying the following properties: (i)
G′ is diagnosable with respect to S, (ii) F (G′) = F (G), and
(iii) D(G) ⊆ D(G′).

Remark 1. G, in our case, can be constructed by a system
expert. One underlying assumption we are making here is
the expert knows all the failure modes F (G). However,
the expert knows neither all the discrepancies, i.e., those
nodes in D(G′)/D(G), nor all the edges, including those
connecting (i) both nodes in D(G′)/D(G), (ii) one node in
D(G′)/D(G) and the other in D(G), and (iii) both nodes
in D(G). These edges characterize how failures propagate
temporally and can be hard for experts to conceive a priori.

IV. SOLUTION

A. Data-driven rTFPG Refinement Algorithm

Algorithm 1 rTFPG Refinement Algorithm
Input: An initially satisfiable rTFPG G and a set of labeled
signals S = ∪p∈F (G)Sp, where Sp is the set of all signals
labeled by the same failure mode p ∈ F (G)
Output: A G that solves Prob. 1

1: for each and every p ∈ F (G) do
2: Set S+ := Sp and S− := S/S+

3: Refine(p, S := S+ ∪ S−, G)

4: Return G

Alg. 1 shows the pseudo-code of our proposed algorithm
to solve Prob. 1. For each and every failure mode p ∈ F (G),



Line 2 assigns all signals with label p as the positive example
set S+ and all the other signals as negative example set S−;
Line 3 tries to find an rTFPG G that is diagnosible (see Def.
9) with respect to S := S+∪S−. Specifically, the algorithm
first tries to find a node d ∈ D(G) of the current G, which
is set initially to the G provided by a system expert, as well
as an STL formula ϕd such that all signals in S+ satisfy ϕd

while those in S− violate ϕd. If this can be achieved for the
current G, the algorithm will move to the next failure mode;
otherwise, it will refine G by using Alg. 2. The algorithm
will terminate once it has checked all failure modes in F (G)
and subsequently found a G that can successfully diagnose
all failures (thereby solving Prob. 1).

Algorithm 2 Refine(p, S,G)

Input: An rTFPG G with its set of edges as E, a node
p ∈ D(G)∪F (G), a set of labeled signals S := S+ ∪S−, a
set of candidate discrepancy nodes H (H ∩D(G) = ∅), and
a set of candidate time intervals I
Output: A refined rTFPG G

1: while DE(p, S,G) > 0 do
2: for d′ ∈ D(G) ∧ (p, d′) ∈ E do
3: if DE(d′, S,G) ≤ DE(p, S,G) then
4: Refine(d′, S,G), break
5: for (d′ ∈ D(G)\mcs(p,D(G), S))∧ (d′, p) 6∈ E do
6: Construct G′ such that E′ := E ∪ (d′, p)
7: if DE(p, S,G′) ≤ DE(p, s,G) then
8: G := G′, Refine(p, S,G)

9: for d′ ∈ H do
10: Construct G′ such that D(G′) := D(G)∪ d′ and

E′ := E∪e′, where e′ := (p, d′)∧[tmin(e′), tmax(e′)] ∈
I

11: if DE(d′, S,G′) < DE(p, S,G) then
12: G := G′, Refine(d′, S,G), break
13: else
14: Construct G′′ such that D(G′′) := D(G′) and

E′′ := E′ ∪ (v, d′), where v is a predecessor of p
15: if DE(p, S,G′′) < DE(p, S,G) then
16: G := G′′, Refine(p, S,G), break
17: Return G

Alg. 2 shows the pseudo-code of the recursive function
Refine(p, S,G) used in Alg. 1. Alg. 2 is provided with a
set of candidate discrepancy nodes H and a set of candidate
time intervals I . Each d ∈ H is defined by its predicate
µ := f(x) ∼ c, which is parameterized by ∼∈ {≥, <} and
c, and its discrepancy type, i.e., AND or OR. Each i ∈ I is
defined by an interval [tmin(i), tmax(i)]. In this paper, the
sets of c, tmin, and tmax are discrete.

Alg. 2 uses the metric DE(p, S,G), called the diagnosis
error (DE), to guide the refinement process, e.g., on whether
to refine the current rTFPG and, if so, which discrepancy
node to add. DE(p, S,G) is computed by Alg. 3. It is based
on the concept of cut-set, adopted from fault tree analysis
[8]:

Definition 10. (Cut-Set). Given an rTFPG G, a node d ∈
D(G), and a set of signals S, a set cs ⊆ D(G) \ d is a cut-
set of d iff there exists a signal x ∈ S, for which ∃k ∈ N,
such that x[k] |= d and ∀d′ ∈ cs ⇔ ∃i ≤ k, x[i] |= d′. A
cut-set cs of d is minimal iff no proper subset of cs is a
cut-set. We use acs(d,D(G), S) to denote all the cut-sets
of d with respect to S and mcs(d,D(G), S) to denote its
minimal cut-set.

Lemma 2. Given an rTFPG G, a node d ∈ D(G) and one
of its cut-set cs ∈ acs(d,D(G), S), if a signal x activates
the node d, ∀d′ ∈ cs, x activates the node d′ as well.

Proof. According to Lemma 1, a signal x activates a node
d indicates there exists an AG σ and a node d ∈ σ such that
x |= ϕd. Then, based on Def. 10, we have ∀d′ ∈ cs⇔ ∃i ≤
k, x[i] |= d′. Therefore, ∀d′ ∈ cs, there exists an AG σ′ such
that σ′ ⊂ σ, d′ ∈ σ′, and x |= ϕd′ (implying d′ is activated
by x as well, according to Lemma 1).

Example 1. (Continued.) The signal x shown in Fig. 1
activates D1, D2, D3, and D4 of the rTFPG G shown in Fig.
2. Therefore, acs(D4, D(G), S) = {{D1, D2, D3}} and
mcs(D4, D(G), S) = {D1, D2, D3}, where S = S+ = x.

Algorithm 3 DE(p, S,G)

Input: An rTFPG G, a node p ∈ D(G) ∪ F (G), and a set
of labeled signals S := S+ ∪ S−
Output: The diagnosis error of node p

1: Φ := ∅
2: if p ∈ F (G) then
3: DE := 1
4: else
5: while ∃cs1, cs2 ∈ acs(p,D(G), S+) ∧ (∃d ∈ cs1 ∩
cs2 ∩OR(G)) do

6: acs(p,D(G), S+) := (acs(p,D(G), S+)
/cs1/cs2) ∪ {cs1 ∪ cs2}

7: for cs ∈ acs(p,D(G), S+) do
8: Construct Gcs such that D(Gcs) = cs ∪ {p}
9: Φ := Φ ∪ {ϕcs} where ϕcs is the STL formula

corresponding to Gcs and p
10: DE := minϕ∈ΦMR(ϕ, S), where

MR(ϕ, S) =

{
1, if ∃x ∈ S+, x 2 ϕ
|{x|x∈S−∧x|=ϕ}|

|S| , otherwise
(1)

11: Return DE

Informally speaking, Alg. 3 checks all the cut-sets of p and
returns their best performance in the context of diagnosing S
(quantified by Eqn. 1). Line 1 checks whether p is a failure
mode node. If it is, DE will be 1; otherwise (meaning p
is a discrepancy node), Line 5-10 will compute the DE
for p. Line 5-6 find acs(p,D(G), S+), all the cut-sets of
p, and merge those that share the same OR node. Line 8-
9 construct an STL formula ϕcs for each and every cut-



set cs of acs(p,D(G), S+)1. Finally, Line 10 finds the cut-
set with the lowest MR(ϕ, S), which is defined in Eqn. 1.
MR(ϕ, S) quantifies the mis-classification rate of ϕ in terms
of S := S+ ∪ S− [9]. In our case, we use the robustness
degree ρ(ϕ, x) to check the satisfaction of a signal x ∈ S
with respect to an STL formula ϕ (see Def. 7).

Finally, let’s elaborate on Alg. 2. Line 1 indicates that the
algorithm will terminate if the diagnosis error DE(p, S,G)
of the current rTFPG G and the current node p with respect
to S is zero. Otherwise, i.e., if DE(p, S,G) is positive, Line
2-16 try to decrease DE(p, S,G) by exploring three options:
(i) selecting a new but existing node p, (ii) adding a new
edge to G, and (iii) adding a new node from the candidate
discrepancy node set H and its corresponding edge(s) to G.

• Line 2-4 implement option (i) and try to find a direct
successor d′ of p that has a lower DE(d′,Π, G). If
such a node can be found, the algorithm will start its
refinement from d′ (the algorithm is recursive in nature).

• Line 5-8 implement option (ii), add a new edge (d′, p),
where d′ is inside D(G) but outside mcs(p,D(G), S),
to the current G, resulting a new rTFPG G′, and check
whether G′ decrease DE(p, S,G′). If so, the refinement
will continue with G′.

• Line 9-16 implement option (iii) and try to add new
node(s) from H . There are two sub-options: Line 10-
12 implement the first sub-option by simply adding
a new node d′ ∈ H and a new edge (p, d′) to the
current G, resulting a new rTFPG G′, and checking
whether G′ decrease DE(p, S,G′) (see Prop. 1); if
so, the refinement will continue with G′; otherwise,
Line 14-16 implement the second sub-option by adding
another edge (v, d′) to G′, resulting a new rTFPG G′′,
where v is a predecessor of p, and checking whether
G′′ decrease DE(p, S,G′′); if so, the refinement will
continue with G′′.

B. Performance Guarantees

Line 10 of Alg. 2 attempts to decrease DE(p, S,G) by
adding a node d′ ∈ H together with an edge (p, d′) to the
current rTFPG G. Such a node d′ is likely to exist according
to the following proposition:

Proposition 1. Given an rTFPG G, a set of labeled signals
S := S+ ∪ S−, and a node p ∈ D(G), let ϕp be the STL
formula for p that minimizes Eqn. 1, Tp be the horizon of
ϕp [10], and P+, N+, P−, and N− be the sets of correctly
classified positive and negative signals and falsely classified
positive and negative signals by formula ϕp, respectively, if
either (i) ∃k > Tp,∃y ∈ N−,minx∈P+(xi[k]−yi[k]) > 0 or
(ii) ∃k > Tp,∃y ∈ N−,maxx∈P+(xi[k] − yi[k]) < 0, then
there exists a node d′ leading to a decreased DE(p, S,G′),
where D(G′) := D(G) ∪ d′ and E(G′) := E(G) ∪ (p, d′).

1According to Lemma 2, any graph constructed by the union cs ∪ d,
where cs ∈ acs(p,D(G), S), is a sub-graph of the AG activated by a
positive signal x ∈ S+. Subsequently, according to Lemma 1, for any
cs ∈ acs(p,D(G), S), we can construct an STL formula ϕcs,p for the
node p such that x |= ϕcs,p.

Proof. It is quite straightforward that the satisfaction of all
the signals in P+ and N+ with respect to ϕp will not be
affected by the newly added node d′ and edge (p, d′) (i.e., the
signals that are correctly classified by G will still be correctly
classified by G′). If condition (i) holds, with properly chosen
parameters c, tmin, tmax (e.g., if such parameters exist in H
and I provided for Alg. 2), a node d′ with a predicate of
the form xi ≥ c and an edge (p, d′) with a time interval
[tmin, tmax] can decrease DE(p, S,G′) by decreasing the
number of signals in N− (in our case, |P−| = 0). Similarly,
if condition (ii) holds, with properly chosen parameters
c, tmin, tmax, a node d′ with a predicate of the form xi < c
and an edge (p, d′) with a time interval [tmin, tmax] can
decrease DE(p, S,G′) by decreasing the number of signals
in N−.

Theorem 1. Given an initially satisfiable rTFPG G, the
refined rTFPG G′ obtained by using Alg. 1 is also satisfiable.

Proof. Line 8, 12, and 16 of Alg. 2 refine the current rTFPG
G by adding either node(s) or edge(s). Each such refinement
guarantee that (i) those nodes in D(G) that are activated by
signals in S+ are still going to be activated and (ii) the newly
added nodes, i.e., those in D(G′)/D(G), are also activated
by signals in S+. Therefore, according to Def. 6, the refined
rTFPG G′ obtained by using Alg. 1 is satisfiable.

Theorem 2. If Alg. 1 terminates, then the refined rTFPG G′

obtained by using the algorithm is diagnosable with respect
to the labeled signal set S := S+ ∪ S−.

Proof. Let p be the last node that Alg. 1 visits before
the algorithm terminates and ϕp be its corresponding STL
formula (the one that minimizes Eqn. 1 in Alg. 3). Then both
conditions for the diagnosability of G′ with respect to S (see
Def. 9) are satisfied as follows:
• For any two signals x′, x′′ ∈ S that have different labels

(i.e., px′ 6= px′′ ), without loss of generality, assume x′ ∈
S+ and x′′ ∈ S−. When Alg. 1 terminates, DE(p, S+∪
S−, G′) is zero, implying x′ |= ϕp and x′′ |= ¬ϕp.

• for any two signals x′, x′′ ∈ S that have the same label
(i.e., px′ = px′′ ), without loss of generality, assume
x′, x′′ ∈ S+. When Alg. 1 terminates, DE(p, S+ ∪
S−, G′) is zero, implying x′ |= ϕp and x′′ |= ϕp.

With Thm. 1 and Thm. 2, we can conclude that if Alg. 1
terminates, it will return an rTFPG G′ that solves Prob. 1.

V. CASE STUDY

In this section, we will validate the performance of
our proposed method with an advanced diagnostics and
prognostics testbed (ADAPT), which was developed by the
NASA Ames Research Center [11]. The ADAPT (see Fig. 4)
emulates a spacecraft power storage and distribution system
with three major components, a power generation component
with two battery chargers and a solar panel, a power storage
component with three sets of lead-acid batteries, and the



Fig. 4: Components of ADAPT.

a power distribution component with two inverters and a
number of loads.

In this case study, We only consider abrupt faults, i.e.,
those unexpected abrupt changes in the system parameter
values. Specifically, we introduce three types of abrupt faults
into the system (i.e., the number of failure modes |F (G)| =
3): (i) adding an additive sensor bias to one of the variables of
load bank 1 (IT), (ii) changing the capacity value of battery
1 (L2E), and (iii) changing the value of one of the resistances
of load bank 1 (TE). The changes in the parameter values
are bounded for all these failures. We generate 20 signals
for each failure mode (i.e., the number of labeled signals
|S| = 60).

Details on the three failure modes F (G), the signals
used in this case study S, the Python code that im-
plements Alg. 1 to solve the rTFPG refinement prob-
lem for the case study, and the obtained rTFPG G′ can
be found at https://github.com/sjtugangchen/
Error-Propagation-Graph.git.

Fig. 5: The rTFPG constructed for the failure mode TE. The
initially provided discrepancy nodes and edges are shown
in blue. All the other discrepancy nodes and edges are
synthesized automatically by Alg. 1.
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Fig. 6: CPU times and DEs for the three failure modes.

We run the code on a 64bit Linux computer with a 16 core
CPU at 3.8 GHz and 64GB of RAM. We set |H| = 300 (see
Alg. 2) and set the time limit to Tmax = 1000 secs, i.e., the
algorithm must terminate within at most Tmax (according
to Thm. 2, if it terminates in t < Tmax, a solution has
been found). Fig. 5 shows the rTFPG obtained by Alg. 1
for the failure mode L2E (the rTFPGs for the other two
failure modes are omitted). Fig. 6 shows the CPS times and
diagnosis errors (DEs) (see Alg. 3) of the three failure modes,
before Alg. 1 terminates (here we run the algorithm for each
failure mode separately). It can be observed that the CPS
time is roughly exponential with respect to the size of D(G),
which is mainly due to the for-loops inside Alg. 2. The
figure also shows that all the failure modes can be diagnosed
correctly, since their DEs are all zeros upon termination.

VI. CONCLUSIONS

This paper introduces a new formalism of TFPGs, called
rTFPGs, that is suitable to model and diagnose failure prop-
agation pertaining to continuous-state systems. Moreover,
it presents a data-driven method to automatically construct
such rTFPGs given a set of labeled signals. Finally, the
performance of our proposed method is validated with the
ADAPT testbed. Given the popularity of TFPGs in safety
critical systems and the proved performance of our method,
we believe our paper provides a necessary foundation for
many future data-driven TFPG synthesis frameworks.
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