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Abstract—An effective human-robot team will incorporate the
cognitive skills of the human with the autonomous capabilities
of the robot group to maximize task performance. However,
producing a seamless fusion will require a greater understanding
of the complex cognitive state of the human as it reacts to inherent
uncertainties in both the task environment and robot dynamics.
In this paper, we investigate how variations in neurophysiological
and behavioral measures correlate with performance in a human-
multiagent team task. This study utilizes external behaviors in
concert with spectral power and functional connectivity, ac-
quired via electroencephalography (EEG), to probe the intricate
interactions between cognitive processes, behaviors, and task
performance. We show that characteristic changes in the α (8-
12Hz) and θ (4-8Hz) bands of EEG, indicate a higher burden on
the cognitive resources associated with visual-spatial reasoning
that occur during decreases in task performance. These results
were reinforced by complementary behavioral shifts in both the
gaze and piloting inputs of the human subjects. Finally, higher
performing subjects tended to engage more actively in the task,
utilizing a greater amount of visual-spatial reasoning, to perform
more effectively.

Index Terms—Electroencephalogram, functional connectivity,
human-multiagent performance.

I. INTRODUCTION

HUMAN-robot teams are expected to provide solutions
in a wide range of applications, such as environmental

monitoring, human directed search and rescue, or hazard
containment and mobilization. These groups may consist of
tens of robotic agents that coordinate their actions to achieve
a common goal. Compared with one, or several agents working
independently, a robotic group holds the advantage of being
more efficient at covering larger areas. These groups also
have the benefit of scalability: individual agents can be added
or removed without significantly affecting the performance
of the group as a whole [1], [2]. In many applications [3]
humans are required to play an active rather than supervisory
role. Such types of human-multiagent tasks give rise to a
fundamental problem: is it possible to optimize a natural
and effective collaboration between the group and its human
partner? Considering the various cognitive constraints placed
upon the human, this problem can be particularly difficult to
solve.
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Among the variety of challenges that need to be addressed
are those related to: 1) the cognitive load of the human opera-
tor; 2) the communication method of the robotic group; and 3)
the interface between the human-robot team, e.g. methods by
which the human can control the agents. Researchers have
made key advancements by testing human subjects within
simulated environments [4], [5]. Such methods are justified by
the fact that controlled environments greatly limit the effects
of confounding factors. However, it has been observed [6]
that given identical tasks, testing in real, rather than simulated
environments can increase the workload and reaction times [7]
of the human subjects.

A major goal in human-robot interaction research is a
fusion between the autonomous capabilities of the robot(s)
and the cognitive skills of the human, while maximizing task
performance, efficiency, and the simplicity of the interaction.
Achieving this goal requires examining human factors, such as
trust [8], choice [9], and limited attention [10]. Additionally,
we must consider suitable levels of autonomy, control sharing
[11], and aspects of human behavior and cognition in the
interaction design. Significant work has attempted to organize
networked systems to influence the behavior of a multirobot
team [12], the characteristics of a multiagent group [13], or to
construct an effective interaction framework [14]. Other work
has examined what information can be effectively passed to
the human operator [15] or how its presentation can affect
the interaction [16]. However, these efforts do not examine
detailed aspects of human cognitive behavior. The ACT-R
cognitive architecture has been utilized to serve as a proxy
for the cognitive state of the operator that was used to
model choice behavior [17]. However, the results were highly
contingent upon model fidelity. There is still a need to examine
neurophysiological measures in real time that can provide
insight into the complex cognitive state of the human.

One important application of human-robot teaming is robot-
assisted urban search and rescue (RUSaR) [19], which can be
highly visual-spatial in nature. Successful task performance
may require acute levels of situational awareness that can
impose a heavy burden on the operator’s attention system [7].
Attention is an essential property of cognitive operation that
can be roughly divided into two categories [20]: 1) bottom-
up, a stimulus-driven process in which a salient sensory event
captures our attention; and 2) top-down, a voluntary goal-
driven process based on aspects, such as tasks, knowledge,
expectations, and memory. The attention system is controlled
by a distributed network of brain regions [21]. Signals acquired
via electroencephalography (EEG) have been used to examine
memory performance [22] and cognitive workload [23]. EEG
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has been employed in social human-robot interaction research
[24] and Brain Computer Interface (BCI) implementations.
[25]. Recently, EEG has also been used to examine fatigue
and drowsiness [26] in aircraft pilots and to identify peri-
ods of distraction during vehicle driving [27]. These studies
primarily include the magnitude and spatial distribution of
spectral power in the θ (4-8Hz) and α (8-12Hz) bands. Theta
oscillations located in the mid frontal region of the brain are
relevant to working memory upkeep [28]. By comparison,
alpha band oscillations over the entire head occur in all the
historic cognitive domains of perception, attention, and access
to working memory. Functional long range α band interactions
exert top down influences to inhibit sensory susceptibility.
Brain regions that are activated during a task exhibit a decrease
in α power, whereas task irrelevant regions show an increase in
α power. Therefore, α oscillations can serve to gate attention
[29].

The combination of neurophysiological with behavioral
characteristics can depict a more comprehensive mental state:
they may indicate how human’s cognitive processes might
affect their behaviors that ultimately determine performance,
and, furthermore, how these relationships, shown in Fig. 1,
transpire. Test scenarios in which human subjects interact with
real robots provide the opportunity to gain insight into how
humans handle, not only the complexities of robot dynamics
and variations in environment, but also the inherent uncertain-
ties in the human-robot interaction.

Fig. 1. Performance to Behavior Loop connecting the cognitive processes
that drive behaviors, which in turn affect the overall task performance. This
figure includes the five variables utilized in this study.

Given the attention-demanding nature of many human-robot
team tasks, a natural question arises: Does the geometric
complexity (GC), defined as the number of agents required
to estimate the kinematic state of the robotic group, impact
task performance, and if so, is this reflected in behavioral and
neurophysiological measures? It has been shown [31] that the
performance of a human-multiagent team task will decrease
with an increasingly complex spatial distribution of the agents.
A decline in performance would be a natural consequence of
the increase in mental computation [7] necessary to contin-
uously estimate the kinematic state of the group. Therefore,
these cognitive demands should present themselves in the α
and θ band features of EEG. In addition, measurable changes
in external behaviors, such as gaze and pilot input activity,
should also be present. These results would be indicative of
the visual-spatial nature of the task.

Our previous works were based on data collected from a
series of human subject experiments. In our first conference
paper [30], we provided a general description of these exper-
iments and presented a preliminary analysis based on gaze

patterns and cognitive load using established methodologies.
In our second conference paper [31], we examined the EEG
data as a collective measure using established spectral power
analysis. In addition, we showed that task performance de-
creases with increasing GC. The major contributions of this
paper are as follows: 1) We offer the most comprehensive
analysis of the data we have collected by investigating human-
multi-agent interaction as cognition affects behaviors which
determine performance, as shown in Fig. 1; 2) We propose a
network-cognitive-scientific approach of analyzing EEG data.
As far as we know, this is one of the first instances such a
methodology has been applied to analyze human multi-agent
performance using data obtained from testing in a real, rather
than simulated environments; 3) We show that the decrease in
task performance associated with GC is directly reflected in
neurophysiological and behavioral measures. Furthermore, we
show that higher performing subjects engage more actively in
the task by utilizing a greater amount of visual-spatial rea-
soning. The neurophysiological and behavioral measurements
in this study are obtained in real time. Consequently, our
results may contribute to future developments in the areas of
augmented cognition [32] and human-swarm interaction [1].

II. EXPERIMENT

Section I defined geometric complexity (GC) as the number
of agents required to estimate the kinematic state of the
robotic group. In order to determine the impact of GC on
human-robot performance, we conducted a series of human
subject experiments inspired by simulation studies [18] but
with real ground robots and humans locally embedded in the
task space. These tests were based on a target identification
and acquisition task. We utilized an EEG device to measure
changes in both spectral power and functional connectivity
in the α and θ bands that are associated with cognitive
activity. In addition, a pair of eye-tracking glasses was used to
measure gaze behavior. The results obtained from this study
are derived from the full complement of neurophysiological
and behavioral measures listed in Table I.

Section II-A describes our experimental setup. Details of
the individual tests are defined in Section II-B. Finally, our
experimental hypotheses are outlined in Section II-C.

A. Experimental Setup

The study consisted of a 4.2 m by 5.5 m test arena
surrounded by motion tracking cameras. The test arena will
be referred to as the “task space”. This task space contained
ground robots under the control of locally embedded human
subjects. Two wall mounted projectors displayed interactive
targets onto the floor.

We have integrated several modules into a measurement
suite to record behavioral, neurophysiological, and mechanical
data. Each module is named for its primary measure: 1) Gaze:
a wearable eye tracking system by SensoMotoric Instruments;
2) EEG: an Emotiv Epoc headset [33] with an array of 14
electrodes positioned via the International 10-20 system; and
3) 3D Pose: an Optitrack motion capture system consisting of
12 wall mounted cameras. A detailed description of the Gaze
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and 3D Pose modules, along with their processing methods
were developed [30], [31]. These modules are shown in Fig.
2, along with one of the target-to-target trials in this paper.

Fig. 2. The human-robot interaction arena with motion tracking cameras and
projectors, as well as a robot group, and a subject outfitted with gaze tracking
glasses.

The coordinate system established by the Optitrack module
will be referred to as the “world” frame, denoted by W . In
addition, each trial was recorded using an overhead camera.
An example is shown in Fig. 4. Piloting commands of linear
and angular velocity (v and ω respectively) from the human
subjects were applied with a Logitech Force 3D Joystick. The
commands were sampled at 30Hz and smoothed with a first-
order Butterworth filter at a corner frequency of 3Hz.

B. Test Trials
Our test subjects were required to pilot a group of six Pololu

m3pi differential drive vehicles in each of two configurations.
Only the input from a single joystick was used to pilot
the group. In order to simplify control, reverse commands
were not allowed. A centralized controller calculated the six
independent non-interacting path-following control laws [34],
with simple minimum inter-robot spacing rules to prevent col-
lisions. Maximum speed limits ensured stability. The control
signals were broadcast wirelessly to each individual robot.

The two multirobot configurations are shown in Fig. 3.
For the serpentine configuration, the human subject would
steer a lead cart while the five trailing robots would simply
follow the path established by the leader. The rectangular
configuration was piloted by steering the central motion of
a virtual rigid body. The six unique command paths were
established by the motion of virtual carts positioned about the
center of a rectangular virtual shape, as seen in Fig. 3. The con-
trolled motion of the rectangular configuration deviated from
its perfect shape depending upon the aggressiveness of the
human subject’s steering commands. Examples of the group
motion can be found at https://youtu.be/QoLUWKFrHWA and
https://youtu.be/TpCnO3kb2jo. The deviation of the carts from
a perfect rectangular shape is also visible in Fig. 4 and Fig. 5.
Detailed illustrations of the controller behavior can be found
at http://cphslab.com/publications.

The kinematics of the robotic group can be described
mathematically by the motion of vectors in a given coordinate

system. We denote the position of cart i in the world frame as
rWi . The origin of serpentine configuration oWsrp was defined
by the position of the third robot in the chain: oWsrp = rW3 .
We chose this position to distribute each subject’s focus over
the larger group, rather than the lead robot. In contrast, the
origin of the rectangular configuration was defined as the
instantaneous centroid of the six carts: oWrct = 1

6

∑6
i=1 r

W
i .

Piloting this group required human subjects to estimate the
true position of the centroid.

Fig. 3. The two multirobot configurations. The tangential T̂ and normal N̂
directions of the body frame for each configuration are labeled. The origin for
the serpentine configuration oWsrp is defined by position of the third robot in
the chain, whereas the origin of the rectangular configuration oWrct is defined
by its centroid.

During each trial, subjects were presented with targets
projected onto the floor. Each target contained heading in-
formation indicated by a line. Subjects were tasked to pilot
the origin of each robotic group from one target to the next
as quickly as possible. New targets were only revealed when
both a minimum origin-to-target distance of 15.2 cm (6 in) and
a minimum heading difference of ±15◦were met. Therefore,
only two targets, a start and a finish, were visible to the
subjects at any time. A detail of a target pair is shown in Fig. 4.
All target-to-target paths were designed to be feasible given the
spatial constraints of the task space. Subjects were provided
eight minutes to pilot each configuration with the explicit task
of acquiring as many targets as possible. Depending on the
skill of the human subject, the number of targets acquired
ranged from 4 to 12. There was a five minute rest phase
between each trial.

Using the lead robot, a subject could effectively acquire
targets with the serpentine configuration by tracking, at the
very least, two robots: the lead cart; and the third cart.
However, the rectangular configuration may require all six
robots for adequate estimation of the origin depending on the
distortion of the controlled shape. Consequently, we assigned
the serpentine a GC of 2, and the rectangle a GC of 6. Re-
gardless of how aggressively the subject attempts to pilot the
rectangular configuration, we expect it to be more difficult to
perform the task effectively than the serpentine configuration.

Ten subjects completed the tests. Each subject was an
undergraduate student between the ages of 18 to 22. All
subjects were instructed on both the testing procedure and
proper use of the test equipment. In addition, there were
two training sessions in which subjects would control first
a single robot, then all six robots in each configuration. We
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TABLE I
DETAIL OF THE DEPENDENT VARIABLES UTILIZED IN THIS STUDY

VARIABLE DESCRIPTION

Targets Acquired per Minute: Tpm Task purpose, and the direct metric of performance. Total number of
successful targets obtained in an 8 minute trial: Section II-C

Spatial Gaze Distribution: GF , GM Gaze distribution in the Forward and Middle regions of the body frame of
the robotic configuration: Section III-A

Joystick Activity: JA Cumulative sum of incremental joystick movement: Section III-B

EEG Power: P̂α, P̂θ Normalized spectral power in the α and θ bands: Section III-E

Regional Connectivity: Cα, Cθ Pairwise phase consistency derived from the complex coherency in the α
and θ bands: Section III-G

demonstrated for them how to acquire the target using each
configuration. For all subjects, the test series proceeded as
follows: training to the serpentine trials; and finally to the
rectangular trials.

Fig. 4. An overhead screen capture of a single target attempt. Both the
position and heading information of the target are displayed. A subject must
pilot the configuration of robots from an initial target (START) to a final target
(FINISH). Note that the gaze distribution, indicated by a heat map, leads the
true centroid.

We examine the arrival phase: the period during which a
subject attempts the acquisition of a target. This phase encom-
passes the final eight seconds before the configuration reaches
the target, as detailed in Fig. 5. We chose not to discriminate
between a successful and an unsuccessful target acquisition.
The subjects are generally unaware of their outcome until after
the configuration has passed over the target point. Therefore,
regardless of success or failure, each subject intends to succeed
and behaves in a manner to do so.

C. Experimental Hypotheses

The explicit objective of our human-robot tasks was to
acquire the maximum number of targets in a fixed period of
time. Consequently, targets acquired per minute (Tpm) is the
inherent metric of task performance that is employed in this
study. In [31] we showed that task performance decreased by
48% as a consequence of increasing the GC. In this study, we
developed two hypothesis that further explore the correlations
between the reduction in task performance and neurophysio-
logical and behavioral characteristics. The dependent variables
d are briefly outlined in Table I and their specific details are
given in Section III. The experimental hypotheses are:

1) Hypothesis 1: The greater cognitive resources that are
required to pilot the rectangular configuration will present

measurable differences in the average neurological and be-
havioral measures. More specifically, θ power in the mid
and frontal regions and α power in the occipital regions of
the brain should increase. In addition, long range functional
connectivity in the α band would indicate top down control of
the visual attention process. These outcomes would imply an
increase in visual-spatial attention and cognitive processing,
all of which are consistent with well-established cognitive
scientific literature. Furthermore, measurable differences in
gaze and pilot input activity should be present. The study was
within-subject, and the single factor Configuration had two
levels: “serpentine” and “rectangle”.

2) Hypothesis 2: The subjects with higher performance
have a natural proclivity for this particular human-robot task.
Therefore, they will utilize fewer cognitive resources than those
with lower performance. The lower cognitive demands should
be reflected in the average neurological and behavioral mea-
sures, as described in Hypothesis 1. The study was between-
subject, and the single factor Performance had 2 levels: “high”
and “low”.

III. DATA ANALYSIS

In this section we discuss the methods used to prepare our
data. Two primary pipelines were established to generate data
for the analysis that follows: one to extract the gaze data;
and the other for the EEG spectral powers and functional
connectivity. Data streams were filtered and temporally aligned
for comparison. The description of these pipelines are provided
in Sections III-A and III-C.

A. Gaze Data

1) Rotation to the Body Frame: A world frame W for the
task space was established by the Optitrack motion capture
system. A pose estimate of the subject’s head was combined
with the gaze, extracted from the eye tracking glasses, to
synthesize the gaze vector in W as rWg . The intersection of
this gaze vector with the arena floor created a heatmap of the
overall distribution of gaze points, as shown in Fig. 5.

All data were transformed into a body centered coordinate
system B, determined for each configuration. In doing so, we
could perform an analysis that was independent from the pose
of the robotic group. The system B was defined as follows:
first, extract the unit vector T̂ , originating from the rigid body
origin oWc and tangential to the direction of movement. Next,
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project a unit vector N̂ perpendicular to T̂ . Finally, translate
by oWc and multiply by the rotation matrix RBW from the world
frame W to the body frame B to obtain

rBg = RBW (rWg − oWc ), (1)

where rBg is the gaze in the body frame. We transformed the
cart positions, target positions, and the gaze distributions into
the new body frame B. An example of these transformations
for a single target attempt is shown in Fig. 5.

2) Estimating Gaze Distributions: The sample probability
of gaze within a given region was determined as the sum of
all gaze points rBg falling in a particular region η divided by
the N total gaze samples contained in each 8 s target period.
We denote the estimate of this probability as Gη:

Gη =
1

N

∑
η

rBg . (2)

One such distribution is also illustrated in Fig. 5.
The wider dispersion of carts in the rectangular configura-

tion naturally induces increased gaze activity in the direction
of N̂ . We examined differences in gaze distributions along
the T̂ direction. Two areas were selected for comparison: the
middle region, denoted by η = M and defined between ±20.3
cm from the centroid; and the forward region, denoted by
η = F and defined as >20.3 cm from the centroid.

B. Joystick Activity

In order to quantify pilot inputs from each human subject,
we defined the joystick activity JA as a unitless measure.
The JA for the N samples in each 8 s target period was
calculated as the cumulative sum of incremental differences in
normalized joystick commands for the linear, ∆v̂n = [v(tn)−
v(tn−1)]/vmax, and angular, ∆ω̂n = [ω(tn)−ω(tn−1)]/ωmax,
velocities by

JA =

N∑
n=1

√
∆v̂2n + ∆ω̂2

n. (3)

C. EEG Spectral and Connectivity Data

The EEG data reduction pipeline is outlined in Fig. 6. Many
of these pipeline methods are commonly used for feature
identification and extraction in BCI implementations [25].
Data reduction was performed as follows:

1) Record EEG data for a single trial attempt.
2) Filter the data with a zero lag, 4th-order bandpass filter

(2-20Hz) and prune to 8 s segments preceding the
acquisition of each target.

3) Perform an independent component analysis to identify
and remove spurious artifacts. Reconstruct the 14 chan-
nel EEG from the remaining independent components.

4) Separate the data into 1 s epochs, offset at 50 ms
intervals.

5) At each epoch, calculate the power spectral densities
in the individual bands, α and θ. Determine the per
channel spectral power at the central frequencies of each
band using (4). Extract the normalized power using (5).
Average each channel over the 8 s period.

6) At each epoch, calculate the Pairwise Phase Consistency
(PPC) in the individual bands, α and θ, between each
channel pair. Average each pair over the 8 s period.

Finally, in order to facilitate statistical testing, we reduced the
full 14 node graph into a compact 4 node graph using (7).

D. Artifact Removal Using Independent Component Analysis

It has been shown that independent component analysis is
an effective means of identifying statistically independent neu-
rological sources [35]. We chose the FastICA algorithm [36] to
generate the independent components. Before proceeding with
the analysis, components associated with electromyographic
artifacts arising from blinks and lateral eye movements were
removed. No more than two components were identified for
removal in any data set.

E. Spectral Power

The power spectral density Sifj (units of µV 2/Hz) for each
EEG channel i was calculated for the j discrete frequencies
fj using a fast Fourier transform at a spectral resolution of
∆f . The spectra were determined over 1 s epochs offset at
increments of ∆T = 50 ms. This yielded temporal sequences
Sifj (tl) at each time epoch l ∈ {1, 2, . . . , L} spanning the
target period, such that L∆T = 8 s. Next, we numerically
integrated the power spectral sequences over the frequencies
in each band ν ∈ {α, θ} to obtain power in µV 2 as

P iν(tl) = ∆f
∑
fj∈ν

Sifj (tl). (4)

The powers were normalized using baseline data by

P̂ iν(tl) =
P iν(tl)−Biν

Biν
, (5)

where Biν was obtained from the human subject at the start
of each trial. Finally, we calculated the target spectral powers
P iα and P iθ as the mean of each temporal sequence over the 8
s target period.

F. Principal Component Transformation of Spectral Powers

The full set of EEG data were arranged into a matrix
X ∈ R14×p for the p target observations accumulated by
all 10 subjects. These data exhibited mild linear correlations
(R2= 0 to 0.5) between individual channels. A valid statistical
test required the estimation and removal of these correlations.
However, the potential interactions between a full complement
of 14 variables can make this intractable in practice. We
removed the linear interrelationships by rotating the data ma-
trix into a coordinate frame, defined by principal components
that were determined via diagonaliztion of the covariance
matrix: Σ = (X − X̄)(X − X̄)T . The 14 unit eigenvectors
wi of Σ formed a basis set for the spatial distribution of
spectral power. These principal components were arranged to
form the columns of an orthonormal matrix W ∈ R14×14.
Multiplying the mean centered EEG data by W produced a
new, nearly uncorrelated (R2 < 10−6) data set K, expressed
as K = W (X − X̄).
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Fig. 5. Detail of gaze distributions for a rectangular configuration. Gaze data, shown as a heat map, are projected onto the arena floor. These data are
transformed from the world frame W to the moving body frame B of the robotic group using (1). The gaze regions and the associated histogram are delimited
by vertical lines. Each of the gaze probabilities, GF and GM , are defined in (2). Average cart positions are marked as C1 through C6. The group origin
(centroid) along with the 30.5 cm diameter threshold region is shown by a black dot and circle, respectively. Note the deviation of the cart positions from a
true rectangular distribution.

Fig. 6. Detail of six steps used in the EEG data reduction.

Our statistical testing proceeded on the data K using an
analysis of variance (ANOVA) between the factors described
in Section II-C. By enumerating the total set of principal
components as W = {1, 2, · · · , 14} and the subset of K
whose differences were statistically significant be given as
A ⊆W, we reconstructed differences in the spatial distribution
of power XB−A between the factors A and B as

XB−A =
∑
i∈A

wi(k̄
B
i − k̄Ai ), (6)

where wi is the principal component, and k̄i is the average
value of ki extracted from the ANOVA. Only components with
p < 0.05 were selected for comparison.

G. Functional Connectivity

There are a wide array of functional connectivity measures
that are commonly use in EEG analysis [37]. We selected the
PPC, which lies between 0 and 1, and has the advantage of
greater statistical power [38] by taking an average of the

(
N
2

)
binary combinations of phase angles in N ensembles, rather
than the N angles themselves. We calculated the PPC values
by extracting the relative phase between channels i and j,

determined from an estimate of the complex coherency for
each of the bands, α and θ. In the remainder of this paper,
references to connectivity between channels specifically refers
to the PPC values between them.

1) Regional Connectivity: Functional connectivity of the 14
EEG channels (AF3, F3, FC5, F7, T7, P7, O1, O2, P8, T8,
F8, FC6, F4, AF4) can be represented by a fully connected
undirected weighted graph, as shown in the top left headmap
of Fig. 7. This graph possesses an adjacency matrix AF ∈
R14×14, where AFij is the PPC value between nodes i and
j. Communication between brain regions is indicated by PPC
values close to unity [39]. However, thresholding our data near
values of unity yielded extremely sparse graphs, an example
is shown in the bottom left headmap of Fig. 7. Moreover, the
likelihood of any specific connection existing among all the
subjects was very low. Consequently, the ANOVA failed to
yield statistical differences among subject groups. However,
the data did indicate that connections between four larger
regions followed general trends. These regions were divided
by the anterior, posterior, right, and left, as shown in the top
left headmap of Fig. 7. In order to extract conclusions from the
observed trends, we reduced our graph from 14 channels, to
the four regions. We specified a set R = {AR,AL, PR,PL}
in which the 14 EEG channels were collected into these four
regions:

AR (anterior-right) = {AF4, F4, F8, FC6};
AL (anterior-left) = {AF3, F3, F7, FC5};
PR (posterior-right) = {T8, P8, O2};
PL (posterior-left) = {T7, P7, O1}.

Next, we defined the elements of the adjacency matrix AR ∈
R4×4 to represent the reduced graph between regions. These
values were determined by the sum total of PPC measures
between EEG channels in a, b ∈ R, normalized by the total
possible connections between them, thereby ensuring that the
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reduced connectivity measure would still fall between 0 and
1. If |a| and |b| are set cardinalities, then ARab is given by

ARab =
1

|a||b|
∑

i∈a,j∈b

i 6=j

Aij . (7)

The four node graph reduces the number of unique connections
from 91 to ten, as illustrated in the top two headmaps of Fig.
7; however, it expresses the same information as the 14 node
graph, but looses the granularity of the individual channels. A
comparison between a sparse 14 node graph and its reduced
four node equivalent is detailed in bottom two headmaps of
Fig. 7. Our analysis proceeded on the reduced connectivity
between the four regions.

Fig. 7. Detail of connectivity reduction. Combining the connections within the
four regions reduces the sparse 14×14 adjacency matrix to a compact 4×4
adjacency matrix. The bottom headplots illustrate one example of a sparse
14×14 graph and its reduced equivalent.

IV. RESULTS AND DISCUSSION

The tests for all subjects proceeded as follows: from train-
ing; to the serpentine trials; and finally the rectangular trials. If
any transferable learning occurred, it would have been from the
serpentine to the rectangular configuration. The training phase
was designed to provide the subjects with ample experience
piloting both configurations. We note that the absence of
counterbalance may be a potential confound that can limit an
interpretation of the results.

Section IV-B presents the results of the within-subject factor
of Configuration with levels of “serpentine” and “rectangle”.
Section IV-C presents the results for the between-subject factor
of Performance with levels of “high” and “low”. High and
low performance values were selected based on the average
number of targets per minute between both configurations as
derived from our previous work [31]. A threshold value of
1.1 targets per minute effectively divided the population into
two groups of five higher, and five lower performing subjects.
These threshold values are given in Table II.

A. Statistical Analysis
We performed all statistical tests as single factor ANOVAs

with Bonferroni post hoc correction. The dependent variables

TABLE II
HIGH AND LOW PERFORMANCE THRESHOLDS

Performance Tpm Threshold

HIGH performing subjects Tpm > 1.08

LOW performing subjects 0 < Tpm ≤ 1.08

d are outlined in Table I. It was assumed under the null hy-
pothesis that the distribution of d between factors A and B was
identical, i.e., H0: d̄A = d̄B . There existed a mild correlation
between gaze distributions of the middle and forward regions
(R2 = 0.5). We fit a linear least-squares model between these
two variables, and the ANOVA proceeded using their residuals.

B. Hypothesis 1: Impact of Geometric Complexity on Neuro-
physiological and Behavioral Measures

This section examines the the ANOVA for the within-subject
factor of Configuration. These data represent the measures
of the serpentine configuration subtracted from those of the
rectangular configuration (∆ = rectangle− serpentine).

The statistically significant differences in EEG character-
istics are summarized in Fig. 8. The results for the α band
are displayed in the left column, while those for the θ band
are displayed in the right column. Differences in normalized
band power, defined in (5), for each of the 14 EEG channels
are displayed in the top plots. The red shaded area represents
a 95% confidence interval on the means. For reference, head
regions are noted according to the groups defined in Section
III-G1. Each headmap illustrates the spatial distribution of the
same data presented in the plot directly above it. Differences
in the regional connectivity, defined in (7), are indicated in the
lower graph.

The statistically significant differences in behavioral data are
summarized in Fig. 9. Error bars represent the 95% confidence
interval on the means.

1) Spectral Power and Connectivity: Fig. 8 shows that
∆P̂α was a minimum of -4% in the right and left frontal
regions. The ∆P̂α then increased to a maximum of 3%
at O2. These results illustrate that piloting the serpentine
configuration resulted in greater power in the frontal region,
and less power in the occipital, temporal, and parietal regions.

Fig. 8 also shows that there was a 21% increase in α con-
nectivity between the anterior-right to posterior-right regions.

The right and left frontal regions displayed positive values in
∆P̂θ, from 15 to 60%, indicating more power in those regions
associated with the rectangular configuration. Furthermore, the
left temporal region showed negative values of ∆P̂θ, as low
as -100%, indicating larger serpentine related power.

There are no statistically significant differences in connec-
tivity between regions in the θ band.

2) Behavioral Characteristics: In Fig. 9 we see that sub-
jects spent 16% more time looking in the middle region of
the rectangular configuration. In addition, joystick activity
decreased by 24%.

3) Discussion: Examining the differences, we see that
piloting the rectangular configuration produced several key
results. The higher θ power in the frontal region indicates more
access to working memory resources. Furthermore, the greater
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Fig. 8. Comparison of the neurophysiological differences associated with
the factor Configuration with ∆ = rectangle− serpentine. These are the
results of the within-subject, single factor ANOVA with Bonferroni post hoc
correction (p < 0.05). Shaded areas represent the 95% confidence interval
on the means.

Fig. 9. Comparison of the behavioral differences associated with the factor
Configuration. Error bars represent upper and lower estimates of the means.

α power in the occipital region is associated with the suppres-
sion of task irrelevant visual stimuli. Additionally, the increase
in α connectivity between the anterior-right to posterior-right
regions is also indicative of top-down suppression of visual
stimuli. This α connectivity may further imply a greater focus
on internal attention [40]. Finally, subjects spend more time
looking in the middle region of the rectangular configuration,
yet they utilized less pilot input.

We can obtain insight into these results by comparing the
methods for piloting the configurations. Each subject controls
the serpentine configuration by steering only the lead cart; the
remaining robots follow the path established by the leader.
Both the reduction of gaze in the middle region and the
greater amount of joystick activity are behaviors that result
from the confident and predictably deterministic control of
the single lead robot. In contrast, subjects pilot the rectan-
gular configuration by steering the collective motion of a
virtual rigid body. Rather than a single cart, each subject

must comprehend the relatively fluid motion of all six robots
at once. A determination of the centroid requires constant
visual estimation. The focused attention that is necessary to
accomplish this results in larger amount of gaze in the middle
region and the utilization of more working memory resources.
Additionally, the indirect interface may also explain the re-
duction in control activity, since the subject’s internal map,
from pilot input to configuration motion, requires a greater
amount of mental computation to establish a similar degree
of confidence. However, there is also the possibility that gross
positioning of the robotic group may have already occurred
and that little positional fine tuning occurred. Regardless,
the suppression of visual stimuli indicates a larger focus on
internal cognitive processes. From a cognitive point of view,
there is simply more internal processing required to pilot the
rectangular configuration. The outcomes are generally slower
speeds and more missed targets. These results are directly
consistent with Hypothesis 1.

C. Hypothesis 2: Characteristics of High/Low Performers

In this section we examine the results of the ANOVA on the
between-subject factor of Performance. Data are given as the
measures of lower performing subjects subtracted from those
of the higher performing subjects (∆ = high − low). The
statistically significant differences in EEG characteristics are
summarized in Fig. 10. The statistically significant differences
in behavioral data are summarized in Fig. 11. Error bars
represent the 95% confidence interval on the means.

1) Spectral Power and Connectivity: Fig. 10 shows that
∆P̂α at channels F7 and AF4 was positive, while the re-
mainder in the frontal region was negative. Similarly, ∆P̂α
at channels T8 and O1 was negative, while the remainder in
the anterior region was positive.

For higher performing subjects, α connectivity increased
19% from the anterior-right to posterior-right regions. There
were also positive differences in the anterior-left to anterior-
right (18%), and the posterior-left to posterior-right (6%)
regions. Additionally, there was a 28% increase in the within-
posterior-left region.

With the exception of F3 and F8, ∆P̂θ was positive over the
frontal region, from 0 to 100%, indicating that high performers
exhibit more power in that region.

The increases in θ connectivity include: 25% from the
anterior-right to anterior-left regions; 25% in the within-
anterior-right and within-anterior-left regions; 31% from the
anterior-right to posterior-right regions; and 39% in the within-
posterior-left region.

2) Behavioral Characteristics: Shown in Fig. 11, high
performing subjects spent 1.7% more time looking in the
forward region. These subjects also had a 35% increase in
joystick activity.

3) Discussion: Examining these differences, we see that the
distribution of α power is complex, showing no real preference
for any region of the head. In addition, the literature currently
does not strongly support a correlation between connectivity
in the θ band and visual-spatial reasoning. Such results are
generally difficult to interpret, and we will not do so.
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Fig. 10. Comparison of the neurophysiological differences associated with
the factor Performance with ∆ = hi− low.

Fig. 11. Comparison of the behavioral differences associated with the factor
Performance.

However, there are clear trends in the remaining data.
Higher performing subjects had a 19% increase in α connec-
tivity from the anterior-right to posterior-right brain regions,
which indicates top-down suppression of visual stimuli. High
performers also displayed a 28% increase in within-posterior-
left connectivity and an increase in α power at T7 and P7.
These changes are indicative of the suppression of sensory in-
formation. However, the within-posterior-left result could also
be associated with O1 connectivity in the posterior-left region.
Unfortunately the reduced connectivity eliminates our ability
to discern between the two. Finally, the higher performing
subjects exhibited more θ power in the frontal region, which
indicates a greater utilization of working memory resources.

Given these observations, the differences between subject
groups conforms to a predictable pattern. Higher performing
subjects drive the configurations faster and miss fewer targets,
but while doing so, they utilize a greater amount of visual-
spatial reasoning and internal processing. Additionally, they
spend a greater amount of time looking in the forward region,

while simultaneously using more control input. However, these
results stand in direct contrast to Hypothesis 2. Interestingly,
higher performing subjects are not naturally more effective
with the given control interface. Our results suggest that high
performers use more cognitive resources to perform at a higher
level, possibly indicating that they are more engaged in the
task.

V. CONCLUSION

This paper examined whether the reduction in human-
multiagent team task performance due to an increase in the
geometric complexity of a robotic group is reflected in aver-
age neurophysiological and behavioral measures. Ten subjects
were locally embedded in a task space. Each subject piloted
six ground robots in two geometric configurations: a serpentine
(GC = 2); and a rectangle (GC = 6). Our tests revealed that
the use of a higher GC configuration yielded a decrease in
task performance and that this reduction was accompanied by
increases in spectral power and functional connectivity that
indicate more internal processing, access to working memory,
and suppression of visual stimuli. Complementary changes in
gaze and pilot input enforce the conclusion that increasing the
GC places a greater burden on the human subject’s cognitive
resources that detrimentally affect the outcome of a human-
multiagent team task. Finally, higher performing subjects,
regardless of the GC, tended to engage more actively in the
task, utilizing a greater amount of visual-spatial reasoning to
perform more effectively. This is one of the first studies to
utilize the distribution of EEG spectral power in concert with
functional connectivity, gaze, and control input, to examine the
complex interaction between cognitive processes, behaviors,
and task performance.
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